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1. INTRODUCTION

Majority vote is a decoding scheme used to enchance signal transmission

in information theory. Binary signals are sent over a channel (called a

binary symmetric channel) in which each signal is correctly received with

probability p. To increase the probability of correct reception, each bit

is repeated 2k-I times, and the bit is decoded as the majority vote, i.e.

the signal (zero or one) which is received at least k times.

If p > 1/2, the majority vote scheme can produce transmission accuracy

which is arbitrarily good by choosing k to be large enough. Define the

probability that the majority vote is correct as

2k-I (2k-1)i ~J 2k-l-J(1)

pm Z -k-P

[j k

Then Pm * 1 as k + -, and as long as p > 1/2 and k > 1. pa > p. See Mc~liece

(1977), p. 3 for proofs and further discussion.

Puthoff (1984) recently conducted an experiment in which the majority

vote technique was used to try to enchance signal transmission via ESP.

Theoretically, the idea of the experiment was that for each of n repetitions,

a percipient (the term parapsychologists prefer instead of "subject") would

make five independent guesses as to the red/black outcome of a single spin

of a roulette wheel. The response chosen at least three times would be

recorded as the percipient's guess for that repetition, thus the guess

would be the majority vote of five trials.

The actual experiment was slightly more complicated, for two reasons.

First, if percipients were asked to guess the same target five times, they

would probably repeat the same answer five times, and the concept of five

independent repetitions would be completely negated. Second, the majority
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vote decision could be reached in as few as three trials, so the extra

guesses would be extraneous.

The actual experiment proceeded as follows. The experimenter spun the

roulette wheel, immediately closing the drawer in which it was kept before

it stopped spinning, so that he did not know the outcome. Thus, the

experiment was designed to detect clairvoyance, extrasensory knowledge of

objective events, and not telepathy. The percipient was given an HP-41C

calculator which was programmed in advance to randomly assign the

designations "red" and "black" to two preselected keys. The random

assignment was made for each individual trial. Thus, the percipient's job

was to push whichever of the two keys "felt right" for each trial. The

calculator kept an internal tally of the number of times "red" and "black"

had been guessed, and terminated the sequence when three of one or the other

had been accumulated. The percipient then handed the calculator to the

experimenter, who opened the drawer, compared the calculator result with

the correct color, and told the percipient whether or not the majority vote

had been successful. We will return to this example momentarily.

In general, consider an experiment which consists of n repetitions of a

randomly stopped Bernoulli sequence, where each sequence is stopped at the

kth success or kth failure, whichever comes first. Another example of such

an experiment might be one in which n poll takers each sample individuals

until they get either k affirmative responses or k negative responses to

some question.

The main goal in such experiments would usually be to make inferences

about p, the per trial probability of success. However, there may be

instances where the goal is to make inferences about pm' the probability of

correct majority vote. Notice that p is also the probability that an

• .- ,.......'......... ... . . ............. ..........................--.........................
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individual sequence ends with a "success", since each sequence is terminated at

the kth success or kth failure, whichever comes first.

In the ESP experiment, the second goal was of interest because the whole

idea of the experiment was to try to increase the overall probability of

correct reception through repetition. One way to approach this goal might be

to estimate p, and then use (1.1) to estimate pm" However, with the

experimental setup used, if paranormal abilities do exist they may operate

on the sequence as a whole, and the trials may not be independent so that

inferences about Pa would be made without the independence assumption.

The remainder of the paper is divided into four sections. In Section 2,

the experiment is modeled in two different ways. In Section 3 we determine

the maximum likelihood estimator for p and study its properties. Other

estimators of p and Pm are derived in Section 4, and the ESP experiment is

analyzed in Section 5.

2. APPROACHES TO THE PROBLEM

The experiment described above can be modeled in various ways. We

consider it first as a sequence of Bernoulli trials, and then as a multinomial

experiment. Although the models are theoretically the same, they are

conceptually and notationally different, and it is interesting and

mathematically convenient to consider both.

Let (Yi, Ti) be the number of successes and the number of trials,

respectively, needed to achieve either k successes or k failures for sequence

i, i-l,...,n. Let (Y,T) be the generic random vector representing the i.i.d.
n n

random vectors (Yi, Ti). Further, let Y Z Yi and T* - Z Ti be the
i-l iml

total number of successes and trials, respectively, for the entire experiment.

'" "'" "'' ".. .".. . . .' ~m..... "%**... -.-. .... ,--''' '' "' --
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Define Zll,...,Z 1T ... -...,ZnTn as the actual randomly stopped

Bernoulli sequences; then it is immediately obvious that TI,...,Tn and T* all
-: Ti

fit the definition of stopping times. Also Yj - Z Ztj; i-l,...,n, and
n Ti J-l

Y Z3 Zij are all randomly stopped sums. We use these facts in

i-l J-1
Section 3.

We can also model the experiment as multinomial, with each of the n

sequences falling Into one of 2k possible categories. The category is

determined by the length of the sequence (k,k+1,...,2k-l), and whether it ended

in success or failure. Let X - (XlX 2 ,...,X2k)' be the 2kxl vector of

multinomial counts, where X2j- number of sequences with exactly k failures

and (J-1) successes and X2j - number of sequences with exactly k successes and

(J-i) failures, J-l,...,k. For example, X1 and X2 represent the numbers of

sequences composed of all failures and all successes, respectively.

k
Note that Z (X2j-l + X2j) - n.

J-i

Define the corresponding vector of multinomial probabilities as x, using

the same subscripts. Thus, we obtain the cell probabilities:

it 2j-l P(k failures, J-1 successes, ending with failure)

k + J-2 J-I k

(2.1)
2J P(k successes, J-1 failures, ending with success)

k + J-2 k i-I" J-1 P

J 1 l,...,k, where q - 1 - p.

-rl o, . -... o . . %a Qo
"
. .



We can relate the two models by noting that

k
Y- Z (i-) X2 ..- 1 + kX2j]

J-1

and (?.2)

k
T*. Z (k + J-1) (X2jl + X2j),

J-

In the next few sections we will utilize both models as necessary.

3. MAXIMUM LIKELIHOOD ESTIMATOR

Since maximum likelihood estimators based on data sampled with random

stopping rules are identical to those for fixed sampling, it follows from the

Bernoulli model that the MLE of p is

p - Y*/T*. (3.1)

From (2.2) we obtain the relationship:

k k
p -g(X) - £ [(J-I)X2jl + kX2 j]/ £ I(k+J-1)(X 2 j_ 1 + X2j)]. (3.2)

J-1 i-I

3.1 Preliminary Results

We state, as lemmas, some well known results which will be used

to prove the asymptotic normality of p.

Lemma 3.1: If X has a multinomial distribution with n trials and probability
vector i, then n- 1 / 2 X L> -VN (I, E) where Z - JaiJj Is a singular matrix

with a - (1-ni if i-J and a = - j if isj.

Proof: This follows from the multivariate Lindeberg-Levy Central Limit

Theorem. See e.g., Serfling (1980, p. 108).

.*. *
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Lemma 3.2 (Delta method): Let Qul be an S-dimensional random vector such
, that /n-- -- > MVN(Q,). Let f( ) be a function from to ,

differentiable at 0 Q; define d [ - Then V (( f(Q))
aQi

-- > N(O, d' Z d).

Proof: See e.g., Bishop, Fienberg and Holland (1975, p. 493).

Lemma 3.3 (Wald's equation): If Zi, i l, are i.i.d. random variables with

T
EIZ I < -, and T is a stopping time for Z1 , Z2 ,..., then E( £ Zi) F(T) E(Z).

iti

Proof: See e.g., Ross (1983, Corollary 7.2.3)

Lemma 3.4: Let Wi, i>l, be i.i.d. random variables with E(W) = 0 and

E(W2 ) _ a2 <-. If T is a stopping variable and ST is the corresponding

randomly stopped sum, then E(S2 ) M o2E(T).

Proof: See Chow, Robbins and Teicher (1965, Theorem 2).

3.1 The Asymptotic Distribution of the MLE

We are now ready to prove:

Theorem 3.1: For the experiment described above, p Y*/T* is asymptotically

N(p, pq/E(T*)), i.e., Vi (;-p) -> N(O,pq/ET).

Proof: Let x- n 1x, so (3.2) can be represented as p g(X) f(;). Combine

Lemma 3.1 and Lemma 3.2, with 0 it, f(n) - f(;) p , E - i, £ given by

Lemma 3.1 and the xi in formula (2.1), and d " - - This results in:

LeC

Sn

*,. . *" % °. % - *. .~ . - - . - - • o . . - .. ,. . . -' . - . . -,.. . .. . . .
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p is asymptotically N(f(n), n d' E d). (3.3)

k k
Next note that f(IL) Z £ [(J-l) 2 j-l + kic2 j1]/[ Z (k+j-l) (2J-I + i2j

= E(Y)/E(T). Apply Lemma 3.3 with ZI - Bernoulli (p), and T the stopping

time for an individual sequence, to get E(Y) - pE(T), and thus f(.) - p.

To determine the asymptotic variance in (3.3), note that E - [diag. i -

R.n'], where diag. !L is a 2k x 2k matrix with the elements of in on the diagonal

and 0 elsewhere. Also, using the notation d2j-l and d2j to correspond to the

elements of d, we find

d 2j_ - [(J-l) - p(k+J-l)]/E(T)

(3.4)
d2j - [k-p(k+J-l)]/E(T).

Thus, d' Z d - d'(diag IL) d - (d'i) 2

k k

i2 + d(d it d W (3.5)
2j-lm2j-l iI2J2j) - 2j-l 2j-l + 2J'2j

But notice from (3.4) that for each of the 2k multinomial outcomes, the

numerator of the corresponding element of d is simply [# successes -

p(# guesses)). Thus, (3.5) can be rewritten as

[E(Y-pT)2 - [E(Y-pT)]2j/[E(T)12 - E(Y-pT)2/[E(T)1 2  (3.6)

since E(Y) - pE(T).

We now invoke Lemma 3.4. Let

q if trial i is a success
Wi if trial i is a failure

S d
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2 2 2T

Then E(W) - pq - pq -0, E(W2 ) - pq + p q Pq, and S T - £ W qY - p(T-Y)

inI

- Y-pT. Thus, from Lemma 3.4,
- 2 2(-T

E(S T E(Y-pT) E(W2 )E(T) - pqE(T). (3.7)

Combining (3.5), (3.6), and (3.7), d' Z d - pq/E(T). Since E(T*) = nF(T), we

have from (3.3), p is asymptotically N(p, pq/E(T*)).

3.3 Computational Formulas for E(T)

To use Theorem 3.1 for inference, we require an expression for E(T*) for

fixed p and k. Although the definitional formula given by (3.11) below is

computable, it is interesting to note that it can be rewritten in the

computational form (3.9), via the recursion in (3.3). In particular, the

closed form expression (3.10) can be used when p - .5, as in the ESP example.

To show the dependence on k. we write ET as E(Tk). The redundancy of this

notation with E(Ti) used earlier should not cause confusion, srice the

distinct roles of the subscripts i and k remain fixed throughout the paper.

Theorem 3.2:

E(Tk+l) = (k+l)k-1 E(Tk) + (2k) (pq) (3.8)

and
k-i 2

E(Tk -k () (pq)1. (3.9)

When p .•5, E(Tk) = 2k(l-( 2k)/4 k]. (3.10)

k
Proof: E(Tk) Z £ (k+j-1) (?2j-1 +

J-1
(3.11)

k (k+J) + p q kS(k).
= j J (piqk kJ def
1=0

r -. :. : .- ',.,,., : ". e ", .",.". . "., " .. . .".. . '. ."." , ..*..* ' . ' .'''_ '*..'* .,.', ''# ','., .'., .'•_ . . . . . ..,
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Now we will show that

(pq)-k[S(k+1) - S(k)j - (k+l)"  (2k). (3.12)

Using the facts that (ji+l) - (k+I + (k ~) and (pj-kq + pq J-k) -(pJk + qJ-k),- i J "J-1 (

_ (pJ-k+l + qj-k+l), write (pq)-k S(k+l) in three pieces:

(pq)-k S(k+l) - z (J+l ) (pJ-kq + pqJ-k)

J-0

Z (k+J) (pj-k + qj-k) (3.13)j-O

k /+

S -(k) (pj-k + qJ-k) (3.4)
J-I

k kj+ (J-k+1 qj-k) (3.15)

Note that (3.13) is simply (pq)-k S(k) + 2(2k

Also, by rewriting (3.15) so that the summation is from J-1 to J-k+l,
2k+l -k

(3.14) and (3.15) combine to give - (k ). Hence, (pq) (S(k+l)-
2k 2k+l) _ (k,- 2k)

S(k)) - 2(k) . (2k+1) = (k+()' (kk), thus verifying (3.12).

From (3.12), we have E(Tk+l) - (k+l)S(k+1) - (k+lS(k) + (2k) (pq) k

(k+l)k E(Tk) + (2kJ(pq)k , thus verifying (3.8).

Now use induction to show (3.9). Since, R(T1 ) 1 1, (3.9) holds for k-l.

Suppose E(Tk) can be written as in (3.9). Then from (3.8), E(Tk+l) - (k+l)k -l

E(Tk) + (k)(pq)k, which is precisely (3.9) for E(Tk+l).

r '. . ' ' ' ' " " . " . " . ' . .. ..

S ... ,' - : :.,.- ]:€'' ,. ' "• .. '-.-,..,,.,. "-'- ."- , .-- , "- ," .. - - ,. . . . . . - . , ,
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For the special case p - .5 invoke the combinational identities

2-2j (2j) r(j + .5)1/vt r(j+l); (3.16)

see Abramowitz and Stegun (1964, p. 258, 6.1.49); and

N/= ( -c+l) 1 ___ 
1
__ __ . j (317)

z~~~~~~~ rpm/am)-(-l Ir(a+N) r(a-1)J; (.7
m0O

see Mangulis (1965, p. 60, 24). Start with (3.9) for p - .5, apply (3.16), then

use (3.17) with - .5 and a - 2, and finally use (3.16) again, resulting in the

formula (3.10). II

If tables of the incomplete beta function are available, we can use those

to compute ET. Note that

k-l

S(k) Z k (k+J) (piqk + pkqJ)
il-0

0

2 - £ (k+i) (piqk + pkqj).

J-k k

But Z ( j) pJq k+l Ip(r, k+l). Thus, S(k) 2 - q Ip(k, k+l)- P-llq(k,k+l)
j r

and E(Tk) kS(k).

It is interesting to note that S(k) is a partial sum of the Catalan number

generating function, C(x) - (i - vl--4x/2x - Z (J+1)-1(2 j ) xj; see Riordan (1968).
1 0

Also note that for large k, (3.10) can be approximated by

E(Tk) 2k - 2(k/n) 1/2 (3.18)

using Stirling's approximation.

3.4 Bias of the MLE

Unlike in the corresponding fixed sample size problem, the MLE p is biased.

The general form of bias is Cov(T*, p)/ET*, since Cov(T*, p) - Cov(T*,Y*/T*)

: .. .--.. ...-.,....... ...-.........-.......,............................ ............ ......... ..
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- EY* - ET Ep - pET* - ET*Ep U (ET*)(bias). To give some notion of the

complexity of this formula, note that when n-1 we find

bias - pq(q-p)/3 for k-2

bias - pq(12pq+5)(q-p)/20 for k-3.

In general, bias < 0 when p > .5, bias > 0 when p < .5. When p - .5, bias -0.

This is clear since E(;q) - E[(Y*/T*) + (T*-Y*)/T*] - 1, but when p - .5

Ep- Eqso E -. 5 - p.

4. OTHER ESTIMATORS

One way to find an unbiased estimator is to find one for each sequence,

then average over the n sequences. Note that (Yi, Ti) Is a minimal sufficient

statistic for p, for sequence I. Also, E(Zii) - p. Thus, an unbiased estimator

for p based on one sequence is

psiW E(Zi1IYi, Ti) T i-- ifY k

T I~ if YI < k.

Ti-1

An unbiased estimator of p is thus

1 n

Pu n Psi"
I=I

Notice that Pu is based only on what Kremers (1985) calls the "preterminal"

data, i.e., the trials before the stopping trial. In particular, Psi

- (E preterminal Zij)/# preterminal trials.

An obvious analog of pSi based on all of the preterminal trials is ppT -

(Y*-n )/(T*-n) - (# preterminal successes)/# preterminal trials, where n. -

number of sequences ending in success. But notice that Pp is not even
pT

asymptotically unbiased. Reawriting it as



I..

n
E (J-1)X 2 _1 + (k-1)X2 j
J-I

PpT n
Z (k+J-2)(X2jl + X2j)
J-1

and applying Lemmas 3.1 and 3.2, we find E("pT) -> E(Y*-ns)/E(T*-n). But

E(Y*-n s ) = n(pET-p ) and E(T*-n) - n(ET-1), where p is given by (1.1). Thus,
m 3

asymptotically, E(pT) < p iff Pm/p > 1, i.e., iff p > L, and

E(PT) > p iff p -

Finally, consider estimating p" In particular, suppose that we are not

willing to assume that trials are independent Bernoulli, but rather that

sequences are independent and fall into one of the 2k multinomial outcomes. As

mentioned in the introduction, this may be a more reasonable assumption in the

ESP experiment, since paranormal abilities, if they exist, may operate on the

entire sequence as a whole.

With this assumption, inferences about p3 are now simply inferences about

the binomial probability that the majority vote result is a success. Thus, the

best estimator for P3 is simply pm E X and its variance is p (1-p )/n.
. "j- 2j a

5. ESP EXPERIMENT

The experiment described in the introduction was carried out with k - 3 and

n = 100, for three percipients. Results are shown in Table 1. We would like to

test the hypothesis that p - .5. From (3.10), ET* = 412.5. Also, Var(P) = .027,

derived by writing out its distribution for p - .5, k w 3, n - 100. Table I also

gives values of the test statistic Z based on the three estimators p, Pu' Pra

Notice that in each case pu < , which would be expected to be the trend
W *

if p > 1- since p is biased.

2.



13

It is also interesting to see if the independence assumption is reasonable

for the data. Table 2 presents the results for two sets of chi-square tests. For

the first set, %o:Guesses are independent, p - .5 was tested, and for the second

set p was used in place of .5, so that just the independence hypothesis was being

tested. Notice that the results Indicate that the independence assumption seems

reasonable for all three percipients, but the assumption that p - .5 is

questionable for two of them. The Z tests also support this conclusion.

One curious result is that percipient #2 had about the expected number of

sequences of length 5, but the split between ending in success and ending in

failure was 27 to 12 instead of about half of each. This led to Z - 2.00 for the

test of pm - .5, whereas both tests of p - .5 resulted in nonsignificance. The

parapsychologists used this as evidence that a test based on Pm would be more

powerful than one based on p. This is clearly not true if the independence

assumption is valid, since the test based on results in loss of information.

Acknowledgements. The author would like to thank Persi Diaconis, Wesley Johnson,

Ingram Olkin, and David Siegmund for helpful discussions.
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Table 1: Results for ESP Experiment

Outcome Percipient

S F 1 2 3

0 3 4 12 9

3 0 15 11 17

1 3 13 16 22

3 1 32 22 26

2 3 12 12 q

3 2 24 27 17

Y*T 250,417 219,416 220,400

p,Z .600,4.06 .526,1.06 .550,2.03

Pu ,Z .587,3.21 .505,.185 .547,1.73
.6

PM z .710,4.20 .602.00 .602.0
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Table 2: Chi-square Tests of Independence Assumption

a. Ro:Trials are independent, p - .5

Outcome P1 P2 P3

S F Exp. Obs. X2  Obs. K2  Obs. X2

0 3 12.5 4 5.78 12 .02 9 .98

3 0 12.5 15 .5 11 .18 17 1.62

1 3 18.8 13 1.79 16 .42 22 .55

3 1 18.8 32 9.27 22 .55 26 2.76

2 3 18.8 12 2.46 12 2.46 9 5.11

3 2 18.8 24 1.44 27 3.58 17 .17
21.24 7.21 11.19

d.f. = 5 p < .005 p > .10 p - .05

b. Ho:Trials are independent

Outcome P1 P2 P3

S F Exp. Obs. Exp. Obs. Fxp. Obs.

0 3 6.4 4 .9 10.6 12 .18 9.1 9 .00

3 0 21.6 15 2.02 14.6 11 .R9 16.6 17 .01

1 3 11.5 13 .20 16.8 16 .04 15.0 22 3.27

3 1 25.9 32 1.44 20.7 22 .08 22.5 26 .54

2 3 13.8 12 .23 17.7 12 1.84 16.5 9 3.41

3 2 20.7 24 .53 19.6 27 2.79 20.2 17 .51
5.32 5.82 7.74

d.f. 4 p .25 p- .20 p 2 .10

-

..-. ,,-..- . .-. .. ..*. , ,*S'.. , . . .-. 5 , .. . . ..
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ESP Experiment, stopping time, maximum likelihood estimation
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Consider an experiment which consists of n independent Bernoulli sequences, each
of which is randomly terminated at either the kth success or the kth failure, which
ever comes first. The goals are to make inferences about the per trial probability
of success, as well as the probability that a sequence is terminated with a success
The latter is equivalent to the probability that if 2k-i trials are accumulated,
the majority will be successes. Various estimators are investigated, and the
results of an ESP experiment fitting this scheme are examined.
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